

The acceleration of a body has the direction of

Motion in a Straight Line

నిన్నటి తరువాయి

- A body is projected vertically upwards reaches a point P in its path at a height h after time t 1 and reaches the ground in t 2 seconds from that point. Then
a) Height of the point P is $\mathrm{h}=\frac{1}{2} \mathrm{gt}_{1} \mathrm{t}_{2}$
b) Initial velocity $=\frac{g}{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
c) Maximum height of the body $H=\frac{g}{8}\left(t_{1}+t_{2}\right)^{2}$

Rocket Problem:

- A rocket is projected up with resultant acceleration a. Its fuel is burnt in " t " seconds. The maximum height reaches by the rocket is $\quad \mathrm{H}=\frac{1}{2} \mathrm{at}^{2}\left[1+\frac{a}{g}\right]$
- Water drops falling at regular intervals: The water drops fall at regular intervals of time from height ' h '. The first drop touches the ground at the instant the nth drop begins to fall then
a) The time taken by the first drop to touch the ground

$$
(t)=\sqrt{\frac{2 h}{g}}
$$

b) The time interval between each drop $=\frac{t}{n-1}$

Juggler Problem:

- A Juggler throws balls in air in such a manner that when a ball is in its maximum height he throws another ball. If he throws n balls in t seconds then maximum height reached by the ball $=\frac{g t^{2}}{2 n^{2}}$.
- If two stones are thrown up in the same direction with same velocity 'u' with a time gap of Δt sec, the time after which they meet $(\mathrm{t})=\frac{u}{g}+\frac{\Delta t}{2}$
- (a) If two stones are thrown up in the same direction with same velocity u with a time gap of Δt sec, the time after which they meet after the thrown of first stone is $\mathrm{t}=\mathrm{u} / \mathrm{g}-\Delta \mathrm{t} / 2$. The height from the ground at which they meet is
$\mathrm{x}=\left(\frac{4 u^{2}-g^{2} t^{2}}{8 g}\right)$ meters.
(b) The time after which they meet after the thrown of second stone is

$$
\mathrm{t}=\frac{\mathrm{v}}{g}-\frac{\Delta t}{2} .
$$

Oblique projectile :

- If a body is projected with a certain initial velocity ' u ' (where $\theta \neq 900$) with the horizontal. Thus it is called an a Oblique Projectile, the trajectory of a projectiles is a parabola at any instant of time the velocity can be resolved in the two

PHYSICS

IIT/NEET Foundation

rectangular components.

- Let $u \cos \theta$ is and $u \sin \theta$ are the horizontal and vertical compo nents of velocities respectively. The horizontal components of velocity remains constant through out the journey where as it vertical component of velocity changes with time due to earth gravitational field.

At the point striking the ground:

- The horizontal component of velocity $=u \cos \theta$
- The vertical component of velocity $=-u \sin \theta$
- The velocity of projection $=T h$ striking velocity of the projectile
- The angle of projection $=$ The striking angle of the projectile
- The angle between velocity and acceleration $=90-\theta$
- If angle of projection is ' θ ' then angle of deviation is 2θ.
- The time of flight $=T=\left(\mathrm{t}_{\mathrm{a}}+\mathrm{t}_{\mathrm{d}}\right)$
$=\frac{u \sin \theta}{g}+\frac{u \sin \theta}{g}=\frac{2 u \sin \theta}{g}$
$\stackrel{g}{\text { The maximum height of the projectile }}$
$=\mathrm{H}=\frac{u^{2} \sin ^{2} \theta}{g}$
a) If $\theta=90^{\circ}$ then $\mathrm{H}=\frac{u^{2}}{2 \theta}$
b) If u and g are constant then $\frac{H_{1}}{H_{2}}=\frac{\sin ^{2} \theta_{1}}{\sin ^{2} \theta_{2}}$
c) The relation between H and T is given by $\mathrm{T}=\sqrt{\frac{\mathrm{EH}}{g}}$.
> Range of projectile $=R=\frac{u^{2} \sin 2 \theta}{g}$
a) If $\theta=45^{\circ}$ Then $\mathrm{R}=\frac{u^{2}}{g}(\max)$
b) Range is same for angles of projection θ and $\left(90^{\circ}-\theta\right)$ with same initial velocity.
c) The relation between R and $\mathrm{H}_{\text {max }}$ is given by $4 \mathrm{H}=\mathrm{R} \tan \theta$. If $\theta=45^{\circ}$ Then $\mathrm{R}=4 \mathrm{H}$
d) The relation between R and T is $\mathrm{R}=\mathrm{gT}^{2} / 2 \operatorname{Tan} \theta$ If $\theta=45^{\circ}$ $\mathrm{T}=\sqrt{2 R / g}$

Worked Numericals :

- A train travels one station to another at a speed of $40 \mathrm{~km} /$ hour and returns to the first station at a speed of $60 \mathrm{~km} /$ hour. Calculate the average speed and average velocity of the train
Sol: Let s (km) be the distance between two stations

Average speed $=\frac{(\text { Total distance })}{(\text { Toatal time })}$

 $=40 \mathrm{~km} / \mathrm{hour}$

\therefore Average velocity $=\frac{\text { Total displacement }}{\text { Toatal time }}$ $=\frac{0}{t_{1}+t_{2}}=0$

- A particle experience constant acceleration for 6 seconds after starting from rest. If it travels a distance $s 1$ in the first $2 \mathrm{sec}, \mathrm{s} 2$ in the next 2 seconds, find the ratio of $\mathrm{s} 1: \mathrm{s} 2: \mathrm{s} 3$?
Sol: Froms $=u t+\frac{1}{2} \mathrm{at}^{2}$

$$
=0 \times 2+\frac{1}{2} a 2^{2}=2 \mathrm{a}
$$

$s_{1}+s_{2}=$ distance travelled in 4 seconds $=0+4+a 4^{2}=8 a$
$\therefore \mathrm{s}_{2}=8 \mathrm{a}-2 \mathrm{a}=6 \mathrm{a}$
$s_{1}+s_{2}+s_{3}=$ distance travelled in 6 sec
$=0 \times 6 \frac{1}{2} a 6^{2}=18 a$
$\therefore s_{3}=18 a-8 a=10 a$
From the above :
$\mathrm{s}_{1}: \mathrm{s}_{2}: \mathrm{s}_{3}=1: 3: 5$

- A tennis ball is dropped on to the floor from a height of 4.00 m . It rebounds to a height of 3.00 m . If the ball was in contact with the floor for 0.010 sec , what was its average acceleration during contact?
Sol: If v 1 and v 2 are initial and final velocities of ball, then change in velocity of the ball in time
$\Delta t=v 2-\mathrm{v} 1$
Average acceleration
$\mathrm{a}=\frac{v_{2}-v_{1}}{\Delta t}=\frac{\sqrt{2 y h_{2}}+\sqrt{2 y} h_{1}}{0.010}$
$\frac{a=\frac{\Delta t}{}=\frac{0.010}{\sqrt{2 \times 9.8 \times 3}+\sqrt{2 \times 9.8 \times 4}}}{0.010}=1652 \mathrm{~m} / \mathrm{s}^{2}$. 0.010
- It a splash is heard 4.23 seconds after a stone is dropped into a well 78.4 m deep then find the velocity of sound in air ,
Sol : Let t sec be time taken by the stone to reach the surface of water.
By the relation, $\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$,
$78.4=0+\frac{1}{2} \times 9.8 \times t^{2}$ or,

$\mathrm{t}^{2}=\frac{78.4}{42}=16$;

or, $\mathrm{t}=4 \mathrm{sec}$.
The time taken by sound to reach the surface of the water $=4.23-4=0.23 \mathrm{~s}$. If v is the velocity of sound
$\mathrm{V}=\frac{5}{t}=\frac{78.4}{0.23}=340.9$.

- A freely falling body covers in the last two seconds is twice that
of covered in first four seconds Find time of fall.
Sol: Distance travelled in last 2 seconds $=\frac{g(4 t-4)}{2}$

Distance travelled in first four seconds $=\frac{1}{2} \times \mathrm{gx}(4)^{2} \quad$.....(2)
according the problem, $\frac{g(4 t-4)}{2}$

$$
\begin{aligned}
& =2 \times \frac{1}{2} \times g \times(4)^{2} \\
\therefore t & =9 S .
\end{aligned}
$$

- A boy aims a gun at a bird from a point at a distance of 100 m , If a gun can impart a velocity of $500 \mathrm{~m} / \mathrm{s}$, to the bullet, at what height above the bird must he aim his gun in order to hit it? $\mathrm{g}=$ $10 \mathrm{~m} / \mathrm{s}^{2}$
Sol: Let h be the required height. The time of travel of the bullet

$$
\mathrm{t}=\frac{x}{v}=\frac{100}{500}=0.2 \mathrm{sec}
$$

And $\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2}$
$=\frac{1}{2} \times 10 \times 0.2 \times 0.2$
$=5 \times 0.04$ meters
$=5 \times 0.04 \times 100 \mathrm{~cm}=20 \mathrm{~cm}$.

- An object falls freely from rest for 5 seconds. Find the distance travelled in the last 2 seconds. ($\mathrm{g}=9.8 \mathrm{~ms}-2$)
Sol : For a freely falling body $u=0$, $\mathrm{a}=+9.8 \mathrm{~m} / \mathrm{sec}^{2}$
Distance travelled in 5 seconds
$\left(S_{1}\right)=u t+\frac{1}{2} \mathrm{at}^{2}$
$=4.9 \times 25 \mathrm{~m}$

Distance travelled in
$1^{\text {th }} 3$ seconds $\left(\mathrm{S}_{2}\right)=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$
$=(0)(3)+\frac{1}{2} \times 9.8 \times 9$
$=4.9 \times 9 \mathrm{~m}$.
\therefore Distance travelled in last 2 seconds
$(S)=S_{1}-S_{2}=16 \times 4.9=78.4 \mathrm{~m}$.

- A grass hoper can jump a maximum horizontal distance of 0.2 m . If he spends negligible
time on ground with what speed can be travel along the road?
Sol: The maximum horizontal range

$\mathrm{R}_{\text {max }}=\frac{u^{2}}{g}$

$\therefore 0.2=\frac{u^{2}}{9 B}$ or, $\mathrm{u}^{2}=0.2 \times 9.8=1.96$ Or, $u=1.4 \mathrm{~m} / \mathrm{s}$.
The horizontal component of velocity
of the grasshopper along the road is $\mathrm{U} \cos \theta=1.4 \times \cos 45^{\circ}$
$=1.4 \times \frac{1}{\sqrt{2}}$
$=1 \mathrm{~m} / \mathrm{s}$.

Try These

- A body falling under gravity moves with uniform 1)Speed 2) Velocity

3) Momentum
4) Acceleration

- A bomb is released by horizontal flying aeroplane. The trajectory of the bomb is a 1)Straight line 2) Parabola $\begin{array}{ll}\text { 3) hyperbola } & \text { 4) Circle }\end{array}$
- The acceleration of a body has the direction of

1) Displacement
2) Change in velocity
3) Velocity
4) both (1) and (2)

- Starting from rest if the displacement of a body $s \propto t^{2}$ the body has

1) Uniform Velocity
2) Uniform acceleration
3) Both (1) and (2)
4) Neither (1) and (2)

- If a body traverses equal displacements in equal inte rvals of time, the body has

1) Variable Velocity
2) Uniform acceleration
3) Zero acceleration
4) Both (1) and (2)

- State true or false: A car can have eastward velocity while experiencing westward acceleration

1) True 2) False
2) It may True 4) None

| Varaprasad |
| :---: | :---: |
| Founder/CEO |
| The Scholar-Edu-tech |
| for IIT/NEET |
| Foundation |
| 6309824365 |

