నవన్న ${ }^{\text {concre }}$	www.ntnews.com, www.facebook.com/ntnipuna	దేశ్ బచావో, దేశ్ బనావో అనే	‘రాజకీయ స్వేచ్ఛ జాతికి ప్రాణ	నోబెల్ బహుమతి పొందిన తొలి తలీకూతుళు ?	నోబెల్ ప్రైజ్లను
	IV పోటీ పలీక్షల ప్రత్యేకం	ననాదం ఇచ్రిన వారు?	అని పేర్కొన్నది ?		ప్రదానం చేస్తారు?
	సోమవారం 16 అక్టోబర్ 2023	పీవీ నరసింహారావు	అరబిందో ఘోష్	మేడం మేరీ క్యూరీ, ఇరీన్ క్యూరీ	డిసెంబర్ 10

Kinetic Theory of Gases is?

Continued from Oct $9^{\text {th }}$

* Isothermal Irreversible Expansion or Compression in One Step:
- For expansion the external pressure must satisfy the expression
- Pext $\leq \mathrm{p}_{2}$, Let Pext $=\mathrm{p}_{2}$ the work involved is
- $\mathrm{w}=-\operatorname{Pext}(\Delta \mathrm{V})=$ $-p_{2}\left(V_{2}-V 1\right)$
- since $\mathrm{V}_{2}>\mathrm{V}_{1} . \mathrm{w}=-$ ve fig 2 displays the magnitude of work as the shaded area.
- For compression the external pressure must satisfy the expression Pext $\leq \mathrm{p}_{1}$, Let Pext $=$ pl . The work involved is
- $\mathrm{w}=\operatorname{Pext}(\Delta \mathrm{V})$
$=\mathrm{p}_{1}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)$
(16)
- \quad since $\mathrm{V}_{1}>\mathrm{V}_{2} \cdot \mathrm{w}=+\mathrm{ve}$, fig 3 displays the work as the sha ded area. Obviously |w_exp | <w_eump
(17)
- If Pext $\leq \mathrm{p} 2$ in expansion or Pext $\leq \mathrm{p} 1$ in compression the desired volume change may be carried out by using set of stops where the movement of piston gets arrested.

* Isothermal Irreversible Expansion or Compression in More than One Step:
- If the above mentioned expa -nsion or compression is carried out in more than one step, the Pext has to be adjusted in each step. Let pext be equal to the final pressure in each step.
- Figure 4 and 5 displays the magnitude of work involved in the expansion and the work involved in compre ssion carried out in two steps, respectively.

respectively.

Notes:
Comparing figs 2 and 4, we find that the magnitude of the work involved has increased in going from one-step to two-step expansion. This trend is continued as the number of steps is increased.

- Comparing figs 3 and 4 , we find that the work involved has decreased in going from one-step to two-step compr ession. This trend is continu -ed as the number of steps is increased.

* Isothermal Reversible

Expansion or Compression:

- In reversible expansion or compression, the external pre -ssure differs infinitesimally from the pressure of gas. For expansion Pext $=\mathrm{p}-\mathrm{dp}$ For compression Pext $=p+d p$ The expression of work is $d \mathrm{w}-\mathrm{Pext} \mathrm{dV}-(\mathrm{p} \mp \mathrm{dp}) \mathrm{dV}=$ pdV
(The product dpdV is ignored as it involves infinite simal quantities)
For an ideal gas, $\mathrm{p}-\mathrm{nRT} / \mathrm{V}$. Hence $\quad \mathrm{d} w-\mathrm{nR} T \frac{a v}{v} \quad$ (18)
For a finite change, we have
$w=-n R T \int_{V_{1}}^{V_{f}} \frac{d V}{V}=-n R T \ln \frac{V_{f}}{V_{1}} \quad$ (19)
- For expansion $\mathrm{V}_{1}\left(=\mathrm{V}_{2}\right)>$ $\mathrm{V}_{1}\left(=\mathrm{V}_{1}\right)$, w is negative and the work is done by the system.
- For expansion $\mathrm{V}_{1}\left(=\mathrm{V}_{1}\right)>$ $\mathrm{V}_{1}\left(=\mathrm{V}_{2}\right)$, w is positive and work is done by on the system.
- Figure displays the magni tude of work involved in
expansion or the work involved in compression is the area under the isotherm.

Note:

- The magnitude of work involved in reversible expan sion is maximum is compa red to the involved in irreversible expansion.
- The work involved in rever sible compression is minim um as compared to that in -volved in irreversible comp -ression.
* Adiabatic Irreversible Expansion or Compression:
- For Adiabatic expansion or compressure, heat is neither enters nor leaves the system. Hence $\mathrm{dq}=0$. The first law of thermodynamics gives
- $\mathrm{dU}=\mathrm{dw}$ or $\mathrm{nCvdT}=$-Pext dVor
- $\mathrm{w}=-\mathrm{P} \operatorname{ext}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)-\mathrm{nCv}\left(\mathrm{T}_{2}\right.$ $-\mathrm{T}_{1}$) (20)
- for expansion $\mathrm{V}_{2}>\mathrm{V}_{1}, \mathrm{w}=<$ 0 , hence $\mathrm{T}_{1}>\mathrm{T}_{2}$. Thus cool ing is observed during expansion.
- For compression $\mathrm{V}_{2}<\mathrm{V}_{1}, \mathrm{w}=$ >0, and hence $\mathrm{T}_{1}<\mathrm{T}_{2}$. Thus heating is observed during compression.

* Adiabatic Reversible

 Expansion or Compression:- The involved under rever sible conditions can be calcul -ated from the expression
- $\mathrm{w}=\Delta \mathrm{U}-\mathrm{nC}_{\mathrm{V} 1 \mathrm{~m}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)$
(21)
- If the final temperature T 2 is not available, it can be evaluated by the expressions derived in the following. For the reversible conditions, Pext $=\mathrm{p} \pm \mathrm{dp}$ thus we have
$\mathrm{dU}=\mathrm{dw}$ or $\mathrm{nC}_{\mathrm{v} 1 \mathrm{~m}} \mathrm{dT}=$ Pext dV or $\mathrm{nC}_{\mathrm{V} 1 \mathrm{~m}} \mathrm{dT}=(\mathrm{p} \pm \mathrm{dp}) \mathrm{dV}=\mathrm{pdV}$ Replacing p nRT/V; we get
$\mathrm{nC}_{\mathrm{v} 1 \mathrm{~m}} \mathrm{~d} T=-\left(\frac{n R T}{V}\right) \mathrm{d} V \quad$ or
$\mathrm{C}_{\mathrm{v} 1 \mathrm{~m}} \frac{d T}{T}=-\mathrm{R} \frac{d V}{V}$
for a finite change we have
$C_{\nu 1 m} \int_{T_{1}}^{T_{2}} \frac{d T}{T}=-\mathrm{R} \int_{V_{1}}^{V_{2}} \frac{d V}{V} \quad$
$C_{v 1 m} \operatorname{In} \frac{T_{2}}{T_{1}}=-\mathrm{R} \ln \frac{V_{2}}{V_{1}} \quad$ or
$\operatorname{In}\left(\frac{T_{2}}{T_{1}}\right)^{c_{V_{1} m / R}}=\ln \left(\frac{V_{2}}{V_{1}}\right) \quad$ or
$\left(\frac{T_{2}}{T_{1}}\right)^{c_{v_{1} m} / R}=\frac{V_{2}}{V_{1}} \quad o$
$T_{2}^{c_{11} / R} V_{2}=T_{1}^{C_{11} / R} V_{1} \quad$ or
$T^{C_{v i m} / R} V_{2}$ is constant
Since $\frac{c_{v 1}}{R}=\frac{c_{p 1 m}}{c_{p 1 m}-c_{v 1 m}}=\frac{1}{\left(c_{p 1 m} / c_{v 1 m}\right)}$. $=\frac{1}{r-1}$

We write the above expression as

- $\mathrm{T}^{\mathrm{V}}\left(\gamma^{-1}\right) \mathrm{V}=$ constant or
- $\mathrm{T}^{\mathrm{V}}\left(\gamma^{-1}\right)=$ constant
(23)
- In terms of pressure, we have
$T\left(\frac{R T}{T}\right)^{\gamma-1}=$ constant or
$T^{\gamma} p^{1-\gamma}=$ constant
The relation between p and V is
$\left(\frac{p V}{R}\right) V^{\gamma-1}=$ constant
or
$p V^{\gamma}=$ constant
- Equation (23) (25) hold good for an ideal gas undergoing adiabatic reversible expan sion or compression.
* Expansion Against Vacuum :
- When the gas undergoes expansion (isothermal or adiabatic) against vacuum. pext $=0$ Hence the work involved is
$\mathrm{dw}=-\mathrm{Pext} \mathrm{dV}=0 \quad$ or $\mathrm{w}=0$
For such an expansion $\Delta V=0, \Delta H=0$ and $\Delta q=0$
(26)

* Molecules	Translational	Rotational	vibrational
Diatomic	$\frac{3}{2} R T$	$2 \times \frac{1}{2} R T$	RT
Triatomic Linear	$\frac{3}{2} R T$	$2 \times \frac{3}{2} R T$	$4 R T$
nonlinear	$\frac{3}{2} R T$	$2 \times \frac{1}{2} R T$	$3 R T$

* Heat Capacities of Gases:

- The absorption of heat by gases causes an increase in (i) kinetic (or translation) ene rgy, (ii) rotational energy, and

IIT/NEET Foundation CHEMISTRY
Hence, $C_{v}=\left(\frac{\partial E_{k}}{\partial T}\right)_{v}=\frac{3}{2} \mathrm{nR}$ and $C_{v 1 m}=\frac{3}{2} \mathrm{R}$
Monoatomic gaseous molecules have only translational motion and thus
$C_{v 1 m}=\frac{3}{2} \mathrm{R} ; C_{v 1 m}=\frac{3}{2} \mathrm{R}+\mathrm{R}=\frac{5}{2} \mathrm{R} ;$
$\gamma=\frac{C_{p m}}{C_{v m}}=\frac{5}{3}=1.667$
(28)
(iii) vibration energy of gaseous molecules.

- The kinetic energy as given by kinetic theory of gases is $\mathrm{Ek}=3 / 2 \mathrm{nRT}$
- Diatomic and polyatomic gaseous molecules. Besides having translation motions, also have rotational and vibrational motions.
- Linear and nonlinear molecules have two and three independent rotational mot ions respectively, and each contribute ($1 / 2$) NT towards molar energy of the molecule.
- Linear and nonlinear molecules have 3 N 5 and 3 N 6 independent vibrational motions, respectively, where N is the number of atoms in the molecule. Each vibrat ional motion contributes RT towards molar energy of the molecule.
- The following is the summ ary of molar energy contri -butes by each motion towards the total molar energy of the molecules. It also includes, their heat capacities and the ratio of heat capacities.
- Comment : The contribution of vibrational motion towards

Total	$\mathrm{Cr}_{1} \mathrm{~m}$	Cy,m	$\begin{aligned} & r- \\ & { }_{\text {cvim, } / \mathrm{cvm}} \end{aligned}$
${ }_{2}^{2} \mathrm{RT}$	${ }_{2}^{\frac{7}{2} R}$	${ }_{7}^{\frac{9}{7}}$	$\frac{9}{7}-1.286$
$\frac{13}{2} \mathrm{RT}$	$\frac{13}{2} \mathrm{R}$	$\frac{15}{2} R$	$\frac{15}{2}-1.153$
6RT	6RT	7 RT	$\frac{7}{6}-1.167$

heat capacity is effective only at higher temperatures (which depends on the nature of gas) and thus at ordinary tempera -ture there is contributions from translation and rotatio nal motions. This gives lower values of C_Vw.

K. Bharathi

Co-founder
The Scholar
Ed-tech for IIT/NEET
foundation
Ph:8309335876

