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 ,   
  ?

 

‘   
 ’ 

 ?

 

  
   ?

  ,  

  
   
 ?
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❖ Isothermal Irreversible 

Expansion or Compression 

in One Step:

l For expansion the external
pressure must satisfy the
expression 

l Pext ≤ p2 , Let  Pext = p2 the
work involved is 

l w = - Pext (ΔV) = 
-p2 (V2 – V1)        (15)

l since V2>V1. w = -ve fig 2
displays the magnitude of
work as the shaded area.

l For compression the external
pressure must satisfy the
expression Pext ≤p1, Let Pext=
p1. The work involved is 

l w = Pext (ΔV) 
= p1 (V1 – V2)           (16)

l since V1>V2. w = +ve, fig  3
displays the work as the sha -
ded area. Obviously |w_exp |
<w_eump (17)

l If Pext ≤p2in expansion or
Pext ≤p1 in compression the
desired volume change may
be carried out by using set of
stops where the movement of
piston gets arrested.

❖ Isothermal Irreversible

Expansion or Compression

in More than One Step:

l If the above mentioned expa
-nsion or compression is
carried out in more than one
step, the Pext has to be
adjusted in each step. Let
pext be equal to the final
pressure in each step.

l Figure 4 and 5 displays the
magnitude of work involved
in the expansion and the
work  involved in compre -
ssion carried out in two steps,
respectively.

Notes: 

Comparing figs 2 and 4, we
find that the magnitude of the
work involved has increased
in going from one–step to
two–step expansion. This
trend is continued as the
number of steps is increased.

l Comparing figs 3 and 4, we
find that the work involved
has decreased in going from
one–step to two–step compr -
ession. This trend is continu
-ed as the number of steps is
increased.

❖ Isothermal Reversible 

Expansion or Compression:

l In reversible expansion or
compression, the external pre
-ssure differs infinitesimally
from the pressure of gas.
For expansion Pext = p – dp
For compression Pext = p + dp
The expression of work is 
dw - Pext dV  - (p ∓dp)dV  =
pdV
(The product dpdV  is
ignored as it involves infinite
simal quantities) 
For an ideal gas, p – nRT/V.

l For expansion V1(=V2) >
V1(=V1), w  is negative and
the work is done by the
system.

l For expansion V1(=V1) >
V1(=V2), w is positive and
work is done by on the system.

l Figure displays the magni -
tude of work involved in

expansion or the work
involved in compression is
the area under the isotherm.

Note: 

l The magnitude of work
involved in reversible expan
sion is maximum is compa -
red to the involved in
irreversible expansion.

l The work involved in rever
sible compression is minim -
um as compared to that in
-volved in irreversible comp
-ression.

❖ Adiabatic Irreversible 

Expansion or 

Compression:

l For Adiabatic expansion or
compressure, heat is neither
enters nor leaves the system.
Hence dq=0. The first law of
thermodynamics gives 

l dU=dw  or nCvdT=-Pext
dVor

l w = -Pext (V2–V1) – nCv(T2
– T1)    (20)

l for expansion V2>V1, w = <
0, hence T1>T2. Thus cool ing
is observed during expansion.

l For compression V2<V1, w =
> 0, and hence T1<T2. Thus
heating is observed during
compression.

❖ Adiabatic Reversible 

Expansion or Compression:

l The involved under rever -
sible conditions can be calcul
-ated from the expression

l w =ΔU–nCv1m(T2–T1)
(21)

l If the final temperature T2 is
not available, it can be
evaluated by the expressions
derived in the following. For
the reversible conditions, 
Pext = p±dp     thus we have

dU = dw  or nCv1mdT = PextdV
or nCv1mdT = (p±dp) dV = pdV
Replacing  p    nRT/V; we get

We write the above expression as
l TV(γ-1) V = constant or 
l TV(γ-1) = constant    (23)
l In terms of pressure, we have 

l Equation (23)  (25) hold good
for an ideal gas undergoing
adiabatic reversible expan -
sion or compression.

❖ Expansion Against Vacuum :

l When the gas undergoes
expansion (isothermal or
adiabatic) against vacuum.
pext = 0 Hence the work
involved is
dw = - Pext dV = 0    or   w = 0
For such an expansion 
ΔV=0, Δ H=0 and Δq =0         

(26)

❖ Heat Capacities of Gases:

l The absorption of heat by
gases causes an increase in (i)
kinetic (or translation) ene -
rgy, (ii) rotational energy, and

(iii) vibration energy of
gaseous molecules.

l The kinetic energy as given
by kinetic theory of gases is
Ek = 3/2 nRT  

l Diatomic and polyatomic
gaseous molecules. Besides
having translation motions,
also have rotational and
vibrational motions.

l Linear and nonlinear
molecules have two and three
independent rotational mot
ions respectively, and each
contribute (1/2) NT  towards
molar energy of the molecule.

l Linear and nonlinear
molecules have 3N  5 and 3N
6 independent vibrational
motions, respectively, where
N is the number of atoms in
the molecule. Each vibrat -
ional motion contributes RT
towards molar energy of the
molecule.

l The following is the summ -
ary of molar energy contri
-butes by each motion
towards the total molar
energy of the molecules. It
also includes,  their heat
capacities and the ratio of
heat capacities.

l Comment : The contribution
of vibrational motion towards

heat capacity is effective only
at higher temperatures (which
depends on the nature of gas)
and thus at ordinary tempera
-ture there is contributions
from translation and rotatio -
nal motions. This gives lower
values of   C_Vw.
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