Tవin bourp	www.ntnews.com, www.facebook.com/ntnipuna	ఏ కేసులో ‘ప్రవవేక’ను రాజ్యాంగ మొలిక సరూూపంలో అంతరాగగంగా	ప్రవశశకక రాజ్యాంగానికి ప్రాణం, ఆత్మ వంటిది	ప్రకరణ 368 ప్రకారం ప్రాథమిక హక్కులను సవరించే అధికారం పారెంంట్కు లేదని ఏ	ఎగువ, దిగువ సభల సభ్యులను ఎన్నుకొనే విదానాన్ని ఏ దేశ
	పోటీ పరీక్షల ప్రత్యేకం	సుప్రంకోక్టో పేర్కొంది?	అని పేర్కొన్నదీ ఎవరు?	కేసులో సుప్రీంకోర్ట్రుర్పుర్చెప్పింది?	రాజ్యాంగం ఆధారంగా తీసుకున్నారు?
A Beceloce.	- 22 అక్టోబర్ 2023	ఎక్సెల్వ్రే క'సు (1979)	డా. బీఆర్ అంబేద్కర్	గోలక్నాథ్ కేసు (1967)	నార్వే

The Velocity of the Body after $\mathbf{n}^{\text {th }}$ Collision?

COLLISIONS

నిన్నటి తరువాయి

- If second body is at rest before collision then
$\mathrm{V}_{1}=\left(\frac{l-e}{2}\right) u_{1} ; \mathrm{V}_{2}\left(\frac{l+e}{2}\right) u_{1}$
$\therefore \frac{V_{1}}{V_{2}}=\left(\frac{l-e}{l+e}\right)$
- During inelastic collision, there is always loss of kinetic energy which is given by Loss in
K.E. $=\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(\mathrm{l}-\mathrm{e}^{2}\right)\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)^{2}$
- Ballistic Pendulum is an example of inelastic collision. When a bullet moving with a velocity ' u ' horizontally is fired into the wooden block (suspended by a string) it rises to height ' h ' from its mean position. Then $\mathrm{mu}=(\mathrm{M}+\mathrm{m}) \mathrm{v}$
Here $\mathrm{V}=\sqrt{2 g h}$
i) $\quad \mathrm{V}=\frac{(M+m)}{m} \sqrt{2 g h}$ Where ' m ' is the mass of the bullet. ' M ' is the mass of the block.
- If the string of the ballistic pendulum makes an angle ' θ ' with the vertical after impact and the length of the string is ' 1 ' then velocity of the bullet
$\mathrm{u}=\frac{(M+m)}{m} \sqrt{2 g l(1-\cos \theta)}$
- Fraction of K.E. lost in this impact $=\mathrm{M} /(\mathrm{M}+\mathrm{m})$
iv) Height of the system

$$
\text { (h) }=\frac{u^{2}}{2 g}\left[\frac{m}{m+M}\right]^{2}
$$

v) $\quad \theta=\cos ^{-1}\left[1-\frac{1}{2 g_{l}}\left(\frac{m u}{m+M}\right)^{2}\right]$

- Coefficient of Restitution: During a collision between two bodies, the ratio of the relative velocity of their separation after collision to the relative velocity of their approach before collision is a constant which Is called coefficient of restitution(e).
coefficient of restitution(e) $=\frac{v_{2}-v_{1}}{i_{1}^{u_{1}-u_{A}}}$
(Newton's experimental Law)
Note: The value of ' e ' lies between 0 and 1 (For semi elastic collision).
- For perfectly elastic collisions "e" $=1$.
- For perfectly inelastic collisions "e" $=0$

- If a body falls from a height " h_{1} "onto hard floor and rebounds to a height " h_{2} " the coefficient of
restitution is given by $\mathrm{e}=\sqrt{\frac{h_{2}}{h_{1}}}$
- If a body falls from a height ' h ' on a horizontal plane, then
i) The height through which the body rebounds after " n " collision $\mathrm{h}_{\mathrm{n}}=\mathrm{e}^{2 \mathrm{n}} \times \mathrm{h}$.
Where ' e ' is the coefficient of restitution.
ii) The velocity of the body after $\mathrm{n}^{\text {th }}$ collision, $\mathrm{v}_{\mathrm{n}}=\mathrm{e}^{\mathrm{n}} \mathrm{x} v$
iii) The total distance covered by it before it stops rebounding is given by
$\mathrm{s}=\mathrm{h}\left(\frac{1+e^{2}}{1-e^{2}}\right)$
iv) The time taken by it come to rest is given by $\mathrm{t}=\sqrt{\frac{2 \hbar}{g}}\left(\frac{1+e}{1-e}\right)$

Elastic collision in two dimensions :

long X - axis,
$\mathrm{M}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\mathrm{m}_{1} \mathrm{v}_{1} \cos \theta_{1}+$ $\mathrm{m}_{2} \mathrm{v}_{2} \cos \theta_{2}$
long Y - axis,

$$
0=\mathrm{m}_{1} \mathrm{v}_{1} \sin \theta_{1}-\mathrm{m}_{2} \mathrm{v}_{2} \sin \theta_{2}
$$

vi) $\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{1} u_{2}^{2}+=$
$\frac{1}{2} m_{1} v_{1}^{2} \frac{1}{2} m_{1} v_{2}^{2}$

Worked Out Examples:

- A gun of mass M fires a bullet of mass m. If total energy evolved in firing is E then find momentum of gun Sol: $\mathrm{mv}=\mathrm{MV}=\mathrm{P}$
\therefore Total energy
$=E=\frac{\rho^{2}}{2 m}=\frac{p^{2}}{2 M}=\frac{p^{2}}{2}\left[\frac{m+M}{M m}\right]$
\therefore momentum of gun, $\mathrm{p}=\sqrt{\frac{2 M m E}{M+m}}$
- A bomb explodes in air when it has horizontal speed of $100 \mathrm{~km} / \mathrm{h}$. It brakes into two ports A and B of mass ratio $1: 2$. If A goes vertically up with speed of $400 \mathrm{~km} / \mathrm{h}$ then
find velocity of B immedi ately after the explosion.

$$
\text { Sol: } \quad p_{B}=\sqrt{p^{2}+p_{A}^{2}}
$$

$$
\begin{gathered}
\therefore \frac{2 m}{3} \times v_{3} \\
=\sqrt{(100 \times m)^{2}+\left(\frac{m}{3} \times 400\right)^{2}} \\
\therefore V_{3}=250 \mathrm{~km} / \mathrm{h}
\end{gathered}
$$

- Two balls each of 0.06 kg mass moving in opposite direction with a velocity 8 m / s collide with each other and move back with equal velocity. Find the change in the momentum of each ball due to the collision.
Sol: $\mathrm{m}_{1}=\mathrm{m}_{2} 0.006 \mathrm{~kg}$
$\mathrm{u}_{1}=8 \mathrm{~m} / \mathrm{sec}$
$u_{2}=-8 \mathrm{~m} / \mathrm{sec}$
We know that during these type of collisions two bodies simply exchange their velocities.
$\therefore \mathrm{V}_{1}=\mathrm{u}_{1}=-8 \mathrm{~m} / \mathrm{sec}$
$\mathrm{V}_{1}=\mathrm{u}_{1}=-8 \mathrm{~m} / \mathrm{sec}$
For $1^{\text {st }}$ body:
Change in momentum
$=m_{1} v_{1}-m_{1} u_{1}=$
$0.06 \times(-8)-0.06 \times 8$
$=0.96 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
For $2^{\text {nd }}$ body:
Change in momentum
$=m_{2} \mathrm{v}_{2}-\mathrm{m}_{2} \mathrm{u}_{2}$
$=0.06 \times 8-0.06(-8)$
$=0.96 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$.
A ball of mass 0.4 kg moving with a uniform speed of 2 ms 1 strikes a wall normally and rebounds. Treating the collision as elastic and the time of contact of the ball with wall as 0.4 s , find the force exerted on the ball.
Sol:Since the collision is elastic, ball rebounds with same velocity ($2 \mathrm{~m} / \mathrm{sec}$.)
\therefore Change in momentum of ball $=\mathrm{mv}-(-\mathrm{mv})=2 \mathrm{mv}$
$=2 \times 0.4 \times 2=1.6 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$. Time of contact $(\mathrm{t})=0.4 \mathrm{sec}$. Force exerted on the ball (F)

PHYSICS
 IIT/NEET
 Foundation

- A bullet of mass 5 g moving with a velocity of $300 \mathrm{~ms}-1$ strikes a ballistic pendulum of mass 1.995 kg and length 1 m and emerges out. Find the velocity and the vertical height through which the pendulum rises.
Sol: $\mathrm{m}_{1}=5 \mathrm{gm}=0.005 \mathrm{~kg}$.;

$$
\mathrm{m}_{2}=1.995 \mathrm{~kg} .
$$

$u_{1}=300 \mathrm{~m} / \mathrm{sec} ; \mathrm{u}_{2}=0$
Common velocity (v) = ?
i) According to law of conservation of momentum
$=m 1 u_{1}+m_{2} u_{2}$
$=\left(m_{1}+m_{2}\right) V$
$\therefore \mathrm{V}=\frac{m_{1} u_{1}+m_{2} u_{2}}{m_{1}+m_{2}}$
$=\frac{0.005 \times 300+19.995(0)}{2}$
$=\frac{1.5}{2}$
$=0.75 \mathrm{~m} / \mathrm{sec}$
ii) Vertical height reached $(\mathrm{h})=$? According to law of
conservation of energy
$\frac{1}{2}(m+M) v^{2}=(m+M) g h$
$\mathrm{h}=\frac{v^{2}}{2 g} \frac{0.75 \times 0.75}{2 \times 9.8}=0.0287 \mathrm{~m}$

- A rifle bullet of mass 30 gm leaves the rifle with a velocity of $100 \mathrm{~m} / \mathrm{s}$ the rifle tending to recoil with a velocity of $2 \mathrm{~m} / \mathrm{s}$. Find the mass of the rifle.
Sol : : Momentum of the rifle $=$ momentum of the bullet (in magnitude)
Hence $\mathrm{M} \times 2=\frac{230}{1000} \times 100=3$

$$
\therefore \mathrm{M}=\frac{3}{2}=1.5 \mathrm{~kg}
$$

- A bullet of mass 'a' travelling with a velocity 'b' strikes a block of wood of mass ' c ' which is rest. Find the common velocity after the impact is
Sol : The momentum before imp$a c t=a b$ If v is the common velocity, the momentum after impact.
$=a v+c v=(a+c) v$
$\therefore(a+c) v=a b$ or, $v=\frac{a b}{a+c}$
- A body of mass 20 kg moving with a velocity of 4 m / s collides with another body of mass 10 kg moving with a velocity of $2 \mathrm{~m} / \mathrm{s}$ moving from the opposite direction. After the collision the two bodies move together, find their common velocity.

Sol : Formula : $\mathrm{m}_{1} \mathrm{u}_{1}-\mathrm{m}_{2} \mathrm{u}_{2}$ $=\mathrm{v}(\mathrm{m} 1+\mathrm{m} 2)$ or,
$20 \times 4-10 \times 2$
$=\mathrm{v}(20+10)$ or,
$80-20=\mathrm{v}$ x 30 or,
$30 \mathrm{v}=60$
$\therefore \mathrm{v}=2 \mathrm{~m} / \mathrm{s}$

- A 6 kg box sled is travelling across the ice horizontally at a speed of $9 \mathrm{~m} / \mathrm{s}$. When a 12 kg package is dropped into it vertically, what is the subsequent speed of the sled?
Sol: Momentum of the sled before the package is dropped $=6 \times 9$
- Momentum after the package is dropped $=(6+12) \mathrm{v}$ Where v is the common velocity
$(6+12) \mathrm{v}=6 \times 9$ or, $18 \mathrm{v}=6 \mathrm{x} 9$
$\mathrm{V}=\frac{6 \times 9}{18}=3 \mathrm{~m} / \mathrm{s}$
- Three particles A,B and C of equal mass " m " move with equal speed "V" along the medians of an equilateral triangle as shown in Fig. They collide at the centroid " G " of the triangle.

- After the collision A comes to rest. B retraces its path with speed V. What is the velocity of C ?
Sol : Since the total momentum before collision is zero, the total momentum after the collision should be zero or, $\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}=0$

And $\mathrm{p}_{1}=0(\mathrm{~A}) ; \mathrm{p}_{2}=-\mathrm{mv}(\mathrm{B})$
$\therefore-\mathrm{mv}+\mathrm{p}_{3}=0$ or, $\mathrm{p} 3=\mathrm{mv}(\mathrm{c})$ Hence the body moves with a speed v in the direction B to G and away from G .

Varaprasad

Founder/CEO
The Scholar-Edu-tech for IIT/NEET
Foundation
6309824365

